

Hale School Mathematics Specialist Test 1 --- Term 1 2016

Complex Numbers

Name: ANSWERS

/43

Instructions:

- CAS calculators are NOT allowed
- · External notes are not allowed
- Duration of test: 45 minutes
- Show your working clearly
- Use the method specified (if any) in the question to show your working (Otherwise, no marks awarded)
- This test contributes to 7% of the year (school) mark

All arguments must be given using principal values.

Question 1 (4 marks: 1, 1, 1, 1)

The following diagram shows a complex number z on the complex plane. Locate the following complex numbers. Label your answers clearly.

(a)
$$Z_1 = \overline{Z}$$
 (1 mark)

(b)
$$z_2 = \frac{1}{z}$$
 given that $|z|^2 = 2$ (1 mark)

(c)
$$z_3 = iz$$
 (1 mark)

(d)
$$Z_4 = \frac{Z}{i}$$
 (1 mark)

Question 2 (9 marks: 2, 3, 4)

Convert z = -1 + i to polar form. (a)

(2 marks)

$$|z| = \sqrt{1^2 + 1^1} = \sqrt{2}$$

$$|z| = \sqrt{1^2 + 1^1} = \sqrt{2}$$

$$arg(z) = tan^{-1} (\frac{1}{-1}) = \frac{3\pi}{4}$$
So $z = \sqrt{2} cis \frac{3\pi}{4}$

So
$$z = \sqrt{2} \operatorname{cis} \frac{3\pi}{4}$$

Determines the modulus

Determines the argument

(3 marks)

Determine the value(s) of θ and x if $z = 6 \operatorname{cis} \theta = x - 3i$. (b)

$$z = 6 \operatorname{cis} \theta = x - 3i$$

$$\Rightarrow$$
 6 sin $\theta = -3$

$$\Rightarrow \quad \theta = -\frac{\pi}{6} \quad \text{or} \quad -\frac{5\pi}{6}$$

Sets up the correct equation

Solves for θ correctly

Solves for x

Determine the argument of $Z = \frac{1}{\sin \frac{7\pi}{40} - i\cos \frac{7\pi}{40}}$ (4 marks) (c)

$$Z = \frac{1}{\sin\frac{7\pi}{10} - i\cos\frac{7\pi}{10}} \times \frac{\sin\frac{7\pi}{10} + i\cos\frac{7\pi}{10}}{\sin\frac{7\pi}{10} + i\cos\frac{7\pi}{10}}$$

$$= \sin\frac{7\pi}{10} + i\cos\frac{7\pi}{10}$$

$$= \sin(\frac{\pi}{2} + \frac{\pi}{5}) + i\cos(\frac{\pi}{2} + \frac{\pi}{5})$$

$$= \cos(\frac{\pi}{5}) - i\sin(\frac{\pi}{5})$$

$$= \cos(-\frac{\pi}{5}) + i\sin(-\frac{\pi}{5})$$
So $\arg(z) = -\frac{\pi}{5}$

$$=\cos(-\frac{\pi}{5})+i\sin(-\frac{\pi}{5})$$

So
$$arg(z) = -\frac{\pi}{5}$$

Realises z

Changes sin to cos etc

Simplifies correctly

States the answer

Question 3 (8 marks: 4, 4)

(a) **Given** that if $z = \cos \theta + i \sin \theta$ then $z^n = \cos (n\theta) + i \sin (n\theta)$ is true for all positive integers.

Show that $z^n = \cos(n\theta) + i \sin(n\theta)$ is also true for all **negative** integers. (4 marks)

Let m = -n be a negative integer $z^m = z^{-n} = (z^n)^{-1}$ $= [\cos(n\theta) + i\sin(n\theta)]^{-1}$ $= \frac{1}{\cos(n\theta) + i\sin(n\theta)} \times \frac{\cos(n\theta) - i\sin(n\theta)}{\cos(n\theta) - i\sin(n\theta)}$ $= \cos(n\theta) - i\sin(n\theta)$ $= \cos(-n\theta) + i\sin(-n\theta)$ $= \cos(m\theta) + i\sin(m\theta)$ So $z^n = \cos(n\theta) + i\sin(n\theta)$ is true for $n \in \mathbb{Z}$

Writes $z^m = (z^n)^{-1}$

Uses the given result

Realises the complex number

Simplifies correctly

(b) Use De Moivre's theorem to show that $\sin 3\theta = 3 \sin \theta - 4 \sin^3 \theta$. (4 marks)

Consider $z^3 = (\cos \theta + i \sin \theta)^3$

Using De Moivre's theorem:

$$z^3 = \cos 3\theta + i \sin 3\theta$$

Using binomial theorem:

$$z^{3} = \cos^{3}\theta + 3\cos^{2}\theta(i\sin\theta) + 3\cos\theta(i\sin\theta)^{2} + (i\sin\theta)^{3}$$
$$= (\cos^{3}\theta - 3\cos\theta\sin^{2}\theta) + i(3\cos^{2}\theta\sin\theta - \sin^{3}\theta)$$

Equate i part :

 $\sin 3\theta = 3\cos^2 \theta \sin \theta - \sin^3 \theta$

$$\Rightarrow \sin 3\theta = 3(1 - \sin^2 \theta) \sin \theta - \sin^3 \theta$$

$$\therefore \quad \sin 3\theta = 3\sin \theta - 4\sin^3 \theta$$

Expands z³ using two different methods

Simplifies and collects terms in the binomial expansion

Simplifies correctly

Question 4 (7 marks: 2, 2, 3)

It is given that **one** of the roots of the complex equation $z^3 = u$ is $2 \operatorname{cis} \frac{2\pi}{5}$.

(a) Write down all the other roots in polar form.

(2 marks)

$$z_2 = 2 \operatorname{cis}(-\frac{14\pi}{15})$$
 Shows angle $2\pi/3$ between roots $z_3 = 2 \operatorname{cis}(-\frac{4\pi}{15})$ Shows same modulus for each

Determine the complex number u. (b)

(2 marks)

$$u = (2 \operatorname{cis} \frac{2\pi}{5})^3$$

$$= 8 \operatorname{cis} (-\frac{4\pi}{5})$$
Raises any root to power 3
Simplifies correctly

Use the given information that 2 cis $\frac{2\pi}{5}$ is a solution of $z^3 = u$ to determine **one** solution of the complex equation $z^3 = -ui$. (3 marks)

$$z^3 = -ui$$

$$\Rightarrow \frac{z^3}{i} = U$$

Rearranges the equation to the form
$$Z^3 = u$$

$$\Rightarrow \left(\frac{z}{i}\right)^3 = \iota$$

$$\Rightarrow \frac{z}{i} = 2 \operatorname{cis}(\frac{2\pi}{5})$$

$$\Rightarrow z = 2 \operatorname{cis}\left(\frac{9\pi}{10}\right)$$

 $\Rightarrow \frac{z^3}{-i} = u$ $\Rightarrow \frac{z^3}{-i} = u$ $\Rightarrow (\frac{z}{i})^3 = u$ $\Rightarrow \frac{z}{i} = 2 \operatorname{cis}(\frac{2\pi}{5})$ $\Rightarrow z = 2 \operatorname{cis}(\frac{9\pi}{10})$ Cother roots: $2 \operatorname{cis}(\frac{7\pi}{30})$ and $2 \operatorname{cis}(-\frac{13\pi}{30})$

Question 5 (5 marks: 2, 3)

The locus of z such that |z - (1 + i)| = |z - (2 - 4i)| can be interpreted (a) geometrically as the set of points equidistant from (1, 1) and (2, -4).

Give a similar geometrical interpretation of |z - (1 + i)| = |2z - (2 - 4i)|. (2 marks)

$$|z - (1+i)| = |2z - (2-4i)|$$

 $\Rightarrow |z - (1+i)| = 2|z - (1-2i)|$

Writes 2z – (2 – 4i) as 2[z – (1 – 2i)]

So z is the set of points such that

its distance from (1, 1) is twice that from (1, -2)

Determine the Cartesian equation of |z - (1 + i)| = |2z - (2 - 4i)|. (b) (3 marks)

$$\Rightarrow (x-1)^{2} + (y-1)^{2} = 4[(x-1)^{2} + (y+2)^{2}]$$

$$\Rightarrow 3x^{2} - 6x + 3y^{2} + 18y + 18 = 0$$

$$\Rightarrow 3(x-1)^{2} + 3(y+3)^{2} = 12$$

$$\Rightarrow (x-1)^{2} + (y+3)^{2} = 4$$

$$\Rightarrow$$
 $3x^2 - 6x + 3y^2 + 18y + 18 = 0$

$$\Rightarrow$$
 3(x - 1)² + 3(y + 3)² = 12

$$\Rightarrow$$
 $(x-1)^2 + (y+3)^2 = 4$

Circle centred at (1, -3) with radius = 2.

Expresses the modulus of 2z - (2 - 4i) correctly

Sets up the equation

Simplifies correctly

Question 6 (6 marks: 4, 2)

- Sketch the locus of u, v and w if
 - (i) $arg(u) = -\frac{3\pi}{4}$
- (ii) $arg(v+1) = -\frac{3\pi}{4}$ (iii) $arg(w+1-2i) = -\frac{3\pi}{4}$

Label the loci clearly.

(4 marks)

Determine z such that $arg(z+1-2i) = -\frac{3\pi}{4}$ and |z| is a minimum. (2 marks)

arg(z+1-2i) and |z|is a min (vector) z ⊥ (locus) w

Recognizes that $z \perp w$ States the answer

Question 7 (4 marks: 2, 2)

(a) Show that (z - i) is a factor of $P(z) = z^3 + iz^2 + (2 - 7i)z - 7$. (2 marks)

$$P(z) = z^{3} + iz^{2} + (2 - 7i)z - 7$$

$$P(i) = (i)^{3} + i(i)^{2} + (2 - 7i)(i) - 7$$

$$= -2i + 2i + 7 - 7$$

$$= 0$$

 \therefore (z – i) is a factor of P(z).

Substitutes z = i into P(z)

Shows P(i) = 0

(b) Form a polynomial with **integer** coefficients such that $x = \sqrt{2}$ and x = i are two of the roots of the polynomial. (2 marks) (Note: The polynomial has other roots.)

$$x = \sqrt{2}$$
 and $x = i$
 $\Rightarrow x^2 = 2$ and $x^2 = -1$
 $\Rightarrow (x^2 - 2)$ and $(x^2 + 1)$ are factors
 $\Rightarrow P(x) = (x^2 - 2)(x^2 + 1)$
 $\therefore P(x) = x^4 - x^2 - 2$

Realises x = -i is also a root and forms (x - i)(x + i)

Shows the other factor $(x^2 - 2)$

